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Introduction

• Parallel computing

• Motivation

• Definitions
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Parallel computing

Figure: Multitasking

• Concurrency and multitasking
• Multiprocessing and multithreading
• History of parallel computing

Did you know?

True parallelism goes back to Luigi and Menabrea, ”Sketch of the
Analytic Engine Invented by Charles Babbage”, 1842

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading



Introduction Threads and processes Using multiple threads Locks Environment

Motivation

• Leverage hardware and software advances

• Increase performance

• Improve response time

• Increase scalability

Did you know?

The ILLIAC IV was one of the first attempts to build a massively
parallel computer. The ILLIAC IV design featured fairly high
parallelism with up to 256 processors, used to allow the machine to
work on large data sets in what would later be known as vector
processing.
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Threads and processes

• Multitasking/concurrency

• Multiprocessing and multithreading

Figure: Structure of a process
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Process

A PROCESS is created by the operating system as a set of
physical and logical resources to run a program. Each process has:

• heap, static, and code memory segments.

• environment information, including a working directory and
file descriptors.

• process, group, and user IDs.

• interprocess communication tools and shared libraries.
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Thread

A THREAD is the execution state of a program instance,
sometimes called an independent flow of control. Each thread runs
within the context of a parent process and is characterised by:

• registers to manage code execution.

• a stack.

• scheduling properties (such as priority).

• its own set of signals.

• some thread-specific data.
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Multitasking

Figure: Stack

- Process
is heavy weight or resource intensive.
- Thread is light weight
taking lesser resources than a process.
- Process switching needs more
interaction with operating system.
- Thread switching has smaller
overhead when switching contexts.
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Multitasking cont’d

Figure: Stack

- In multiple
processing environments each process
executes the same code but has
its own memory and file resources.
- All threads can share same
set of open files, child processes.
- If one process is blocked
then no other process can execute
until the first process is unblocked.
- While one thread is blocked and
waiting, second thread in the same

task can run.
- Multiple processes without using threads use more resources.
- Multiple threaded processes use fewer resources.
- In multiple processes each process operates independently of the
others.
- One thread can read, write or change another thread’s data.Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading
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Local variables

Figure: Stack

Whenever
a program calls a subroutine
by a CPU instruction CALL, it saves
the current instruction pointer (IP)
onto the stack. It marks its position
before it branches, so it knows
where to return after termination of
the subroutine. This saved address on
the stack is called a return address.

A high-level programming language
like C or C++ also puts local variables of the subroutine on top of
the stack. Thus, the subroutine gets its own memory area on the
stack where it can store its own data. This principle is also the key
of recursive routine calls because every new call to the subroutine
gets its own return address and its own local variables on the stack.
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Local variables

Figure: Memory layout of a
process

Upon termination of the subroutine,
high-level languages first clean up the
stack by removing all local variables.
After that, the stack pointer
(SP) again points to the saved return
address. At a RET or RETURN
instruction, the processor reads
the return address from stack, jumps
back to the former IP position, and
continues the original program flow.
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Local variables

Figure: Memory layout of a
process

When creating a
member variable (A field) or a static
member (static field), the address of
memory of the variable in the virtual
address space (which is translated
to a global memory address space)
is shared between all threads that are
created within the scope or the class.

TLS (Thread Local Storage)is
a region in the heap that can only be

accessed by a specific thread.
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Sample problem - matrix multiplication

Multiply two matrices matA and matB, storing the result in
matC.
Dimensions of the sources matrices are passed in
dimxA,dimyA,dimxB and dimyB variables.
Dimensions of the destination matrix is assumed to be
dimyA ∗ dimxB

Figure: Matrix multiplication algorithm
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Matrix multiplication

Matrix multiplication algorithm

1 Check the sizes of two matrices A (m× n) and B (t× u): if
n = t then we can multiply them otherwise no (in that order
AB)

2 If they can be multiplied, then create a new matrix of size m
by u

3 For each row in A and each column in B multiply and sum
the elements and the place the results in the rows and
columns of the result matrix AB

Matrix multiplication has complexity of O(n3). It means that every
time the dimension increases 10-fold, the time required will
increase 1000-fold.
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Reference serial code

int multiply(int dimxA ,int dimyA ,int *matA ,int dimxB ,

int dimyB ,int *matB ,int *matC)

{

int i,j,k,val;

//run matrix multiplication loop

for(i=0;i<dimyA;i++)

{

//clean destination line

for(j=0;j<dimxB;j++)

{

val =0;

for(k=0;k<dimxA;k++)

val+=matA[i*dimxA+k]*matB[k*dimxB+j];

matC[i*dimxB+j]=val;

}

}

return 1;

}

Note

The sample code is straigtforward and simple. It does not in any way pretend to be
the most optimal implementation, like Strassen algorithm, for example.Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading
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Reference serial code performance

Benchmarking is based on multiplying 100,300,500,1000,3000 and
5000-large square matrices.
Serial code execution gives the following results

Dim Time, ms

100 1
300 36
500 195
1000 8617
3000 267337
5000 1409010

Table: Serial code performance.
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Native threads-based implementation

• Use native threads to improve performance
• Assume 12 cores machine
• Changes require in the code
• Keep the algorithm intact

Figure: Parallel matrix multiplication

Note

Higher-grade optimisation of matrix multiplication requires
algorithm re-design. It is advisable to take into account the nature
of the matrices.
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Grid decomposition
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(b) Grid decomposition

The example above demonstrates grid decomposition for 4 threads.
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Native threads-based implementation

• Require additional routine

• Parallelise outermost loop only

• Assign a subset of lines per thread

• Need thread configuration structure

• Simple implementation - no messaging support required

Threads will receive configuration data upon creation - no need to
deliver configuration data through external means (queues,
messages, etc).

struct MatMult

{

int dimxA ,dimyA ,dimxB ,dimyB; // dimensions

int *matA ,*matB ,*matC; //src and dst matrices

int line_start ,line_end; //start and end lines

//for the thread

};
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Native threads-based implementation

#define THREADS_NUM 12

int multiply(int dimxA ,int dimyA ,int *matA ,

int dimxB ,int dimyB ,int *matB ,

int *matC)

{

//store thread handles

pthread_t threads[THREADS_NUM ];

// configuration structures per thread

struct MatMult config[THREADS_NUM ];

int count_per_thread; // number of lines per thread

int i;

// calculate number of lines per thread

count_per_thread=dimyA/THREADS_NUM;
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Native threads-based implementation

for(i=0;i<THREADS_NUM;i++)

{

config[i]. dimxA=dimxA;

config[i]. dimxB=dimxB;

config[i]. dimyA=dimyA;

config[i]. dimyB=dimyB;

config[i].matA=matA;

config[i].matB=matB;

config[i].matC=matC;

config[i]. line_start=i*count_per_thread;

config[i]. line_end=config[i]. line_start+

count_per_thread;

}

config[THREADS_NUM -1]. line_end +=

dimyA%THREADS_NUM;

for(i=0;i<THREADS_NUM;i++)

pthread_create (& threads[i],NULL ,

multiply_aux ,& config[i]);

for(i=0;i<THREADS_NUM;i++)

pthread_join(threads[i],NULL);

return 1;

}
Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading
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Native threads-based implementation

The actual working routine should:
Note: threads are created asynchronously, which means that
pthread create call will not block and wait until the thread
function is done.

• Accept thread configuration for matrices

• Work within the line limits
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Native threads-based implementation

void *multiply_aux(void *ptr)

{

struct MatMult *pv=( struct MatMult *)ptr;

int i,j,k,val;

//run matrix multiplication loop

for(i=pv->line_start;i<pv ->line_end;i++)

{

for(j=0;j<pv->dimxB;j++)

{

val =0;

for(k=0;k<pv->dimxA;k++)

val+=pv->matA[i*pv->dimxA+k]*

pv->matB[k*pv ->dimxB+j];

pv->matC[i*pv ->dimxB+j]=val;

}

}

return NULL;

}
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Native threads-based implementation performance

Benchmarking is based on multiplying 100,300,500,1000,3000 and
5000-large square matrices.
Native threads-based code gives the following results

Dim Time - serial Time - native threads

100 1 1
300 36 8
500 195 45
1000 8617 696
3000 267337 23179
5000 1409010 126169

Table: Native threads-based performance.
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Figure: Pink lake of Hillier, Australia
Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading



Introduction Threads and processes Using multiple threads Locks Environment

OpenMP

• Industry standard

• Supported by major compiler developers

• Supproted for multiple languages

• Multiplatform

• Based on directives or pragmas

• Spawns team of threads to handle parallel requests

• Supports shared and thread-local variables

• Supports conditional parallelisation

• No need to change the code significantly
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OpenMP directives

• Composed of a sentinel followed by the command and the
clause:

• C/C++ sentinel: #pragma omp
• Fortran sentinel: !$OMP

• Commands include:
• parallel: forms a team of threads and starts parallel execution
• for: parallelise loop automatically
• sections: Defines non-iterative worksharing construct
• single: specifies a single-thread block in a team
• critical: restrict execution of a block to a single thread
• barrier: specifies an explicit barrier at the point
• atomic: ensures atomicall access to a specific storage
• threadprivate: specifies thread local storage for the specified

variables

Example

#pragma omp parallel for private(i,j) schedule(dynamic)
!$omp secions reduction(+:result)Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading
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PARALLEL directive

• Forms a team of threads
• Team size is controlled by either

1 Environment variable OMP NUM THREADS
2 Explicitly set by function call omp set num threads()
3 By default - using the number of CPUs in the system

• Can be conditioned with IF clause

Example

#pragma omp parallel

printf("Hello , world from thread %d\n",omp_get_thread_num ());

Output

Hello , world from thread 0

Hello , world from thread 2

Hello , world from thread 1

Hello , world from thread 3
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PARALLEL directive, continued

• Can be combined with for command to provide automatic
loop parallelization

• The iterations of the loop will be distributed dynamically in
evenly sized pieces

• Threads will not synchronize upon completing their individual
pieces of work if NOWAIT is specified

Example

int N=10, result=0,i;

#pragma omp parallel for if (N>5) reduction (+: result)

for(i=0;i<N;i++) result +=i*5;
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PARALLEL directive, Data Scope Clauses

• IF (scalar logical expression) - conditional parallel execution:
check if there is enough work to do?

• DEFAULT (PRIVATE—SHARED—NONE) - establishes
default value for sharing attribute

• REDUCATION(operator : variable) - variable is initialised
with to relevant value and at the end of the loop the value of
the variable processes through the reduction operator for each
thread

• SHARED(list) - declares list to be shared by tasks
• PRIVATE(list) - declares list to be private to a task
• FIRSTPRIVATE(list) - same as private, initialises each

member of the list with the value given
• LASTPRIVATE(list) - same as private, leaves the value of

each member as it was before vacating the block
• COPYIN(list) - copies the value of the master thread

variables to the thread variables of other threads
Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading
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Data scoping - lets re-iterate

• Every variable has scope: shared or private

• Scoping can be controlled with scoping clauses:

• shared
• private
• firstprivate
• lastprivate
• reduction clause explicitly identifies a reduction variable as

private

• Scoping is one of the leading error sources in OpenMP

• Unontended sharing of variables
• Privatization of the variables that must be shared
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PARALLEL directive, Execution Control Clauses

• SCHEDULE (type, chunk) - Describes how iterations of the
loop are divided among the threads in the team. The following
policies supported:

1 STATIC
2 DYNAMIC
3 GUIDED
4 RUNTIME
5 AUTO

• ORDERED - ensures predictable order of threads scheduling

• NOWAIT - If specified, then threads do not synchronize at
the end of the parallel loop.

• COLLAPSE(scalar) - Specifies how many loops in a nested
loop should be collapsed into one large iteration space and
divided according to the schedule clause.
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SCHEDULE STATIC

STATIC schedule means that iterations blocks are mapped
statically to the execution threads in a round-robin fashion.

The nice thing with static scheduling is that OpenMP run-time
guarantees that if you have two separate loops with the same
number of iterations and execute them with the same number of
threads using static scheduling, then each thread will receive
exactly the same iteration range(s) in both parallel regions.

This is quite important on NUMA systems: if you touch some
memory in the first loop, it will reside on the NUMA node where
the executing thread was. Then in the second loop the same
thread could access the same memory location faster since it will
reside on the same NUMA node.
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SCHEDULE DYNAMIC

DYNAMIC scheduling works on a ”first come, first served” basis.
Two runs with the same number of threads might (and most likely
would) produce completely different ”iteration space” - ”threads”
mappings as one can easily verify

Since precompiled code could be run on various platforms it would
be nice if the end user can control the scheduling. That’s why
OpenMP provides the special RUNTIME scheduler clause. With
runtime scheduling the type is taken from the content of the
environment variable OMP SCHEDULE. This allows to test
different scheduling types without recompiling the application and
also allows the end user to fine-tune for his or her platform.
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SCHEDULE GUIDED

There is another reason to choose between static and dynamic
scheduling - workload balancing. If each iteration takes vastly
different from the mean time to be completed then high work
imbalance might occur in the static case.

Take as an example the case where time to complete an iteration
grows linearly with the iteration number. If iteration space is
divided statically between two threads the second one will have
three times more work than the first one and hence for 2/3 of the
compute time the first thread will be idle. Dynamic schedule
introduces some additional overhead but in that particular case will
lead to much better workload distribution.

A special kind of dynamic scheduling is the GUIDED where
smaller and smaller iteration blocks are given to each task as the
work progresses.
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REDUCTION clause

• REDUCTION clause applies operation to the variable stated
after all threads are done

• Variables listed are automatically declared private

• Reduces synchronisation overhead

int factorial(int number)

{

int factor=1, i;

#pragma omp parallel for reduction (*: factor)

for(i=2;i<number;i++)

factor *=i;

return factor;

}
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REDUCTION clause

• At the beginning of the paralle block a private copy is made of
the variable and pre-initilized to a certain value

• At the end of the parallel block the private copy is atomically
merged into the shared variable using the defined operator

•
The private copy is actually just a
new local variable by the same name
and type, the original variable is not accessed to create the copy.
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SINGLE execution

• Allows code to be executed serially in par-
allel region

• Any thread will run the code, the rest of the team will skip it
and wait until SINGLE block is done

• NOWAIT attribute can be used to avoid waiting at the end
of the block

Example

#pragma omp parallel

{

printf("In parallel , all threads

#pragma omp single

    printf("Printed from only one thread\n");

    printf("In parallel again , all threads\n");

}
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MASTER execution

• Allows code to be executed serially in par-
allel region by the master thread only

• Only master thread run the code, the rest of the team will
skip it without waiting

Unless you use the threadprivate clause, the only important difference between single
nowait and master is that if you have multiple master blocks in a parallel section, you
are guaranteed that they are executed by the same thread every time, and hence, the
values of private (thread-local) variables are the same.

Example

#pragma omp parallel

{

printf("In parallel , all threads

#pragma omp master

    printf("Printed from only one thread\n");

    printf("In parallel again , all threads\n");

}
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FLUSH directive

Even when variables used by threads are supposed to be shared,
the compiler may take liberties and optimize them as register
variables. This can skew concurrent observations of the variable.
The flush directive can be used to ensure that the value observed
in one thread is also the value observed by other threads.
In the example, it is enforced that at the time either of a or b is
accessed, the other is also up-to-date.
You need the flush directive when you have writes to and
reads from the same data in different threads.

Example from the OpenMP specification

/* First thread */ /* Second thread */

b = 1; a = 1;

#pragma omp flush(a,b) #pragma omp flush(a,b)

if(a == 0) if(b == 0)

{ {

/* Critical section */ /* Critical section */

}
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Sections

• SECTIONS directive is a non-iterative work-sharing construct

• Each SECTION is executed once by a thread in the team

• It is possible for a thread to execute more than one section if
it is quick enough and the implementation permits this

Figure: Sections execution
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Sections: Example

Example

#pragma omp parallel

{

printf("Parallel 1. Going from thread %d\n",

omp_get_thread_num ());

#pragma omp sections

{

printf("Entered into the sections , thread %d\n",

omp_get_thread_num ());

#pragma omp section

printf("Section 1. Going from thread %d\n",

omp_get_thread_num ());

#pragma omp section

printf("Section 2. Going from thread %d\n",

omp_get_thread_num ());

}

printf("Parallel 2. Going from thread %d\n",

omp_get_thread_num ());

}
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Sections: Example output

As the output suggests the only thread executing the sections was
thread 3 - the rest of the threads skipped sections part.

Output

Parallel 1. Going from thread 3

Entered into the sections , thread 3

Section 1. Going from thread 3

Section 2. Going from thread 3

Parallel 1. Going from thread 2

Parallel 1. Going from thread 0

Parallel 1. Going from thread 1

Parallel 2. Going from thread 3

Parallel 2. Going from thread 0

Parallel 2. Going from thread 1

Parallel 2. Going from thread 2
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Synchronization in OpenMP

• MASTER forces the block to be executed only by the master
thread

• CRITICAL(name) is used to serialize work in parallel block

• if CRITICAL is named, all critical block with the same name
are serialized

• ATOMIC is used to ensure that only a single thread will
execute the statement followed. The directive is not
structured

• BARRIER is used to force all threads in the team wait upon
reaching the barrier point. Barriers are costly. They should not
be used inside other synchronization blocks, such as
CRITICAL, SINGLE, SECTIONS or MASTER
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Sample problem - matrix multiplication with OpenMP

Multiply two matrices matA and matB, storing the result in
matC.
Dimensions of the sources matrices are passed in
dimxA,dimyA,dimxB and dimyB variables.
Dimensions of the destination matrix is assumed to be
dimyA ∗ dimxB

Figure: Matrix multiplication algorithm
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Reference OpenMP code

int multiply(int dimxA ,int dimyA ,int *matA ,int dimxB ,

int dimyB ,int *matB ,int *matC)

{

int i,j,k,val;

//run matrix multiplication loop

#pragma omp parallel for shared(matC) private(j,k,val)

for(i=0;i<dimyA;i++)

{

//clean destination line

for(j=0;j<dimxB;j++)

{

val =0;

for(k=0;k<dimxA;k++)

val+=matA[i*dimxA+k]*matB[k*dimxB+j];

matC[i*dimxB+j]=val;

}

}

return 1;

}
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OpenMP-based implementation performance

Benchmarking is based on multiplying 100,300,500,1000,3000 and
5000-large square matrices.
OpenMP-based code gives the following results

Dim Time - serial Time - native threads Time - OpenMP

100 1 1 1
300 36 8 8
500 195 45 43
1000 8617 696 656
3000 267337 23179 23101
5000 1409010 126169 125913

Table: OpenMP-based performance.
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Combined performance graph

Figure: Timing of matrix multiplication code
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Advanced loop parallelisation - nested loops

• Problem - nested loops, can they be parallelised?
• This code DOES not work!

#pragma omp parallel for

for(int i=0;i<10;i++)

#pragma omp parallel for

for(int j=0;j<10;j++)

...

• OpenMP 3.0 loop nesting works

#pragma omp parallel for collapse (2)

for(int i=0;i<10;i++)

for(int j=0;j<10;j++)

...

• Another alternative: enable nesting by calling
omp set nested(1);
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Conclusions

+ Threads may increase performance proportional to the
threads team size

+ Native threads implementation requires significant rework of
the code

+ OpenMP threads usage can be implemented with minimal
code changes

+ OpenMP threads usage is cross-platform and is easy to
maintain across various operating systems and compilers

- Threads can lead to a variety of conditional problems

- Multithreaded applications are harder to debug
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Figure: Bees
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Locking issues - race conditions

• Multithreaded code suffers from the bugs related to multiple
readers/writers of the same object

• If not protected, an object access may suffer from race
condition where multiple threads may try and
change/retrieve status of the same object at the same time

• Serialization of access is required in order to protect against
race condition

• Locking mechanisms differ from one OS
to another
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Locking issues - race conditions

• Race conditions are difficult to detect and debug

• Mathematical proof of software correction is not necessarily
enough to ensure the lack of race conditions

• Example: Therac-25 disaster, 6 died

• North American blackout of 2003
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Locking issues - deadlocks

• A deadlock occurs when at least two tasks wait for each
other and each cannot resume until the other task proceeds

• Often happens when code block requires locking of multiple
mutexes at once

• Usually the order of mutexes to be locked must be preserved
among threads in order to avoid deadlocks

• No matter how much time is allowed to
pass, this situation will never resolve itself
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Locking issues - OpenMP locking API

• OpenMP provides rich, cross-platform API for locking support

• OpenMP locks are wrappers around the platform-specific
implementations of mutex operations

• OpenMP runtime library provides a lock type, omp lock t in
its include file omp.h

OpenMP API

• omp init lock initializes the lock

• omp destroy lock destroys the lock

• omp set lock attempts to set the lock. If the lock is already set by another
thread, it will wait until the lock is no longer set, and then sets it

• omp unset lock unsets the lock

• omp test lock attempts to set the lock. If the lock is already set by another
thread, it returns 0; if it managed to set the lock, it returns 1.
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Locking issues - OpenMP locking API example

• omp destroy lock can be called only for unlocked objects

• Kernel transition inside the lock call adds up to the overhead

omp_lock_t writelock;

omp_init_lock (& writelock );

#pragma omp parallel for

for( i = 0; i < x; i++ )

{

omp_set_lock (& writelock );

// one thread at a time

a=b*c;

omp_unset_lock (& writelock );

}

omp_destroy_lock (& writelock );
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Scoped locks vs. CRITICAL vs. ATOMIC

• It is allowed to leave the locked region with jumps (e.g. break,
continue, return), this is forbidden in regions protected by the
critical-directive

• Scoped locking is exception safe, critical is not

• All criticals wait for each other, with guard objects you can
have as many different locks as you like - named critical
sections help a bit, but name must be given at compile-time
instead of at run-time like for scoped locking

• The most important difference between critical and atomic is
that atomic can protect only a single assignment and you can
use it with specific operators

• Addition with critical section is 200 times more expensive
than simple addition, atomic addition is 25 times more
expensive then simple addition
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Environment variables

OpenMP uses a set of environment variables that can be modified
to ensure the best performance for the application.

• OMP NUM THREADS: number, set the desired number of
threads in a team

• OMP DYNAMIC: true or false, forces dynamic schedule
type to be used

• OMP STACKSIZE: number optionally followed by unit
specification B, K, M or G, specifies the size of the stack for
threads created by OpenMP. If unit is not specified, kilobytes
(K) is assumed
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Loadleveler and OpenMP

• Loadleveler provides special considerations for OpenMP
applications

• #parallel threads=N reserves the required number of cores
• OMP NUM THREADS variable is automatically set by

Loadleveler according to parallel threads value

Loadleveler job description example

#@account_no=uoa

#@class=default

#@group=nesi

#@resources=ConsumableMemory (100mb) ConsumableVirtualMemory (100mb)

#@wall_clock_limit =10:00

#@job_type=serial

#@parallel_threads =4

#@output = $(job_name ).$(jobid ).out

#@error = $(job_name ).$(jobid ).err

#@queue

./ run_my_omp_app
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