
Introduction to Parallel Computing

NeSI Computational Science Team
support@nesi.org.nz

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Outline

1 Story of computing
The beginning
Need for speed

2 Hegelian dialectics
Thesis

Moore’s law
Amdahl’s law

Anti thesis

3 Parallel computing
Key concepts

4 Parallel programming
Parallel decomposition

N body problem
Bioinformatics problems

5 Memory classification
Shared memory
Distributed memory

2 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Story of computing
The Beginning

Alan Turing

3 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Story of computing

Turing Machine

• During World War II, Alan Turing, a British mathematician,
started to work with Britain’s code-breaking centre and
deciphered Germany’s U-boat Enigma, winning the battle of
Atlantic!

• He conceived the principles of modern computers and
introduced his famous “Turing Machine” in 1936.

• “Turing Machine” is a hypothetical device
• It manipulates symbols on a strip of tape based on a table of

rules.
• It could simulate the logic of almost any computer algorithm.

4 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Story of computing

Z1

• On the other side of the spectrum Konrad Zuse, a German
civil engineer in Berlin, started dreaming of a machine that
could do mechanical calculations.

• He started working in his parents’ apartment and built his first
electro-mechanical computer, the Z1, in the same year 1936.

• It was a floating point binary mechanical calculator with
limited programmability, reading instructions from a perforated
35 mm film.

5 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Story of computing

Konrad Zuse

So we have a situation of two people coming from two different
backgrounds and laying foundations of computer science.

6 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Story of computing
Need for speed

Seymour Cray

• There was great appetite for speed, which was fuelled by the
aspirations of an American named Seymour Cray.

• He designed the first supercomputer, the Cray-1, in 1976. He
is called the “father of supercomputing”.

7 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Story of computing

Cray-1

First supercomputers were monolithic in structure and architecture.

8 / 64

Story of computing

Cray-1

First supercomputers were monolithic in structure and architecture.
20
14
-0
2-
19

Introduction to Parallel Computing
Story of computing

Need for speed
Story of computing

Cray-2 had only 1 gigaflops peak performance with a cost as high as
$32,000 per megaflops, whereas your PC will have around 40 gigaflops
peak performance at $0.04 cost per megaflop (“Flops” stands for floating
point operations per second).

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Hegelian dialectics
Thesis: one

Two rules

• If we look carefully at the history of computing, we could see
the Hegelian cycles of thesis and anti-thesis resulting in a
synthesis.

• Computing, or even supercomputing started with monolithic
machines getting bigger and faster. That was the thesis.

• Two rules emerged to support this model:
• Moore’s Law
• Amdahl’s Law

9 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Hegelian dialectics

Moore’s law

• Proposed by Gordon E. Moore (co-founder of Intel) in 1965.
• In simple terms the law states that processing speed of
computers will double every two years.

• More specifically it stated that the number of transistors on an
affordable CPU would double every two years.

• Over roughly 50 years from 1961, the number of transistors
doubled approximately every 18 months!

10 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Hegelian dialectics

Moore’s law in airline industry!

In 1978, a commercial
flight between New York
and Paris cost around $900
and took seven hours. If the
principles of Moore’s Law
had been applied to the
airline industry the way they
have to the semiconductor
industry since 1978, that
flight would now cost
about a penny and take
less than one second.

C
op

yr
ig

ht
 ©

 2
00

5
In

te
l C

or
po

ra
tio

n.
 A

ll
rig

ht
s

re
se

rv
ed

.

11 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Hegelian dialectics

Gordon E. Moore

12 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Hegelian dialectics

Amdahl’s law

• Proposed by Gene Amdahl in his 1967 technical paper titled
“Validity of the single processor approach to achieving large
scale computing capabilities”.

• “The speedup of a program using multiple processors in
parallel computing is limited by the time needed for the
sequential fraction of the program.”

• The famous Amdahl’s equation below is not in this paper, but
only a small literal description in the 4th paragraph of the 4
page paper!

13 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Hegelian dialectics

Amdahl’s equation

• Where:
• P is the proportion of a program that can be made parallel.
• (1− P) is the proportion that cannot be parallelized.
• N is the number of processors.
• S is speedup.

• The idea of Amdahl’s law was to show the limitations of
parallel computing!

14 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Hegelian dialectics

• Not even considering the overheads of parallelisation.
• If parallelisation cannot be done evenly, results will be much
worse!

15 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Hegelian dialectics
Anti-thesis: many

Rules that go wrong!

• Amdahl’s law actually revealed the possibility of parallel
computing:

• There is actual increase in speed, if the algorithm is
parallelisable.

• There is practically no other way to increase speed in many
cases, even if theoretically this may not the most efficient way
to do it.

• Collapse of Moore’s law is in the vicinity:
• “In about 10 years or so, we will see the collapse of Moore’s

Law”, says Physicist Michio Kaku, a professor of theoretical
physics at City University of New York (2013).

• Because of the heat and leakage associated with silicon based
transistors.

16 / 64

Hegelian dialectics
Anti-thesis: many

Rules that go wrong!

• Amdahl’s law actually revealed the possibility of parallel
computing:

• There is actual increase in speed, if the algorithm is
parallelisable.

• There is practically no other way to increase speed in many
cases, even if theoretically this may not the most efficient way
to do it.

• Collapse of Moore’s law is in the vicinity:
• “In about 10 years or so, we will see the collapse of Moore’s

Law”, says Physicist Michio Kaku, a professor of theoretical
physics at City University of New York (2013).

• Because of the heat and leakage associated with silicon based
transistors.

20
14
-0
2-
19

Introduction to Parallel Computing
Hegelian dialectics

Anti thesis
Hegelian dialectics

This slide is intentionally left blank.

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Hegelian dialectics

Gene Amdahl

17 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Evolution of computing - 1

18 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel computing

Background

Parallel computing emerged as an anti-thesis.
• It is the art of breaking up a big chunk of serial computation
into smaller atomic units which can be done in parallel.
Factors that helped:

• The arrival of cheap commodity computing hardware.
• A theoretical possibility of achieving comparable speeds to

serial HPC computing using parallel computing.
• Recognition that nature itself is parallel, however complex it

may appear.

19 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel computing

Key concepts

• A cluster is a network of computers, sometimes called nodes or
hosts.

• Each computer has several processors.
• Each processor has several cores.
• A core does the computing.
• If an application can use more than one core, it runs faster on
a cluster.

20 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel computing

Node overview

21 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel computing
Principles

• Breaking down of a problem into discrete parts that can be
solved concurrently.

• Each partial solution consists of a series of instructions.
• Set of instructions are executed simultaneously on different
processors.

22 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Evolution of parallel computing

Grid & SOA

• Grid Computing
• A distributed computing model that orchestrates computing

resources of several academic and research institutions to work
like a unified computing system.

• Service Oriented Approach (SOA)
• In SOA applications are composed by invoking network

available services to accomplish some tasks.
• This paradigm is adopted mainly by business and enterprise

community.

23 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Evolution of parallel computing
High performance computing

• In 2002, TOP500 list reported that 20 percent of HPC
installations as “clusters”. This marked the emergence of
parallel computing as a serious platform for HPC.

• By 2013, 80 % of TOP500 supercomputers were “clusters”.

24 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Evolution of computing - 2

25 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Hegelian synthesis

NeSI-like systems

• Mixing grid computing with high performance computing.
• Aiming to cater to research and academic community.

Cloud providers

• Merging serviced oriented computing with grid concepts.
• Providing services to enterprises and small businesses.

• Orchestrate storage, memory and network resources of
geographically distributed data centers as a unified unit.

• The resources are made available to customers on demand
with apparent elasticity.

26 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Evolution of computing - 3

27 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

NeSI Systems

Facilites

NeSI HPC resources cater to New Zealand’s research and academic
community and are spread between three major facilities:
• BlueFern Supercomputer at the University of Canterbury,
Christchurch.

• NIWA HPC Facility, Wellington.
• Centre for e-Research at the University of Auckland.

There is a single grid interface called Grisu that can be used to
access both BlueFern and CeR (NeSI Pan) clusters.

28 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

NeSI Systems

Available HPC architectures

NeSI provides several kind of HPC architectures and solutions to
cater for various needs.
• BlueGene/P.
• Power6 and Power7.
• Intel Westmere & SandyBridge.
• Kepler and Fermi GPU servers.
• Intel Xeon Phi Co-Processor.

29 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

NeSI Systems

Available bioinformatics applications

Many general purpose scientific applications are already available in
NeSI systems.
• Velvet: Sequence assembler for very short reads.
• Bowtie: Aligns short reads to a reference genome.
• BLAST: Searches for regions of similarity between biological
sequences.

• Hmmer: Protein sequence search and alignment with Hidden
Markov Models.

• Muscle: Multiple sequence aligner.
• PhyML: Maximum likelihood phylogenies.
• MrBayes: Bayesian inference and model choice across a wide
range of phylogenetic and evolutionary models.

30 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

NeSI Systems: Performance analysis
PhyML case study: on Pan cluster

• PhyML is a software that estimates maximum likelihood
phylogenies.

• The right compilers and optimization options for a specific
architecture can increase the performance quite a lot!

31 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel programming

Rationale

• Is there a rationale for writing your own parallel codes?
• General purpose scientific applications are good for research.

• Around 80 % of NeSI cluster usage is by those applications at
the moment.

• They are easy to customise and use.

• However, as research complexity increases and its scope is
refined, general purpose scientific applications may not cater
to all the needs of researchers.

32 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel problems
Case Study: N Body Problem

Gravitational n-body problem (Newton’s laws of force)
Force is a function of mass and acceleration (f = m× a)

33 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel programming
Case Study: N Body Problem

• Mercury: N body simulator developed by Dr John Chamber at
NASA Ames Research Center, California

• Dr Joseph M. Hahn of Space Science Institute, Colorado had
to come up with a variant Mercury to take care of additional
drag forces that drive planet migration!

34 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel programming
Case Study: N Body Problem

• Philip Sharp at University of Auckland started implementing
Mercury n-body integration on GPUs.

• Then he found out that he has been experimenting with more
robust versions of those techniques.

• He is now rebuilding the n-body integrator from scratch.

35 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel programming
Case Study: N Body Problem

We need to look for hotspots and bottlenecks to parallelise an
algorithm.

Hotspots

• Hotspots are the areas where we have massive iterative works,
which can be parallelized into smaller units that are
independent of each other.

• Those units of work are called tasks and such algorithms are
often described as “embarrassingly parallel”.

36 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel programming
Case Study: N Body Problem

Bottlenecks

• Bottlenecks are the places where computations become
inter-dependent. Usually there is a need to synchronise the
data before we begin another set of parallel tasks.

• If an algorithm has got too many inter-dependent tasks, it will
be called a fine-grained algorithm, and may not able to
parallelise efficiently.

37 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Direct n-body problem
Governing equations

fij = G
mimj

||rij ||2
· rij
||rij ||

(1)

Fi =
∑

1≤j≤N

fij , j 6= i (2)

Fi = miai (3)

pi =

∫∫
ai dt (4)

Where:
• Force (F) is a function of mass and acceleration (2).
• Position (p) is a function of velocity/acceleration and time (4).

38 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Direct n-body problem
Pseudocode

1: Input initial positons and velocities of particles
2: while each simulation step do
3: for each particle do
4: Compute total force on the particle
5: end for
6: for each particle do
7: Compute velocity and position of the particle
8: end for
9: Output new velocity and position of particles

10: end while
11: Output final velocity and position of particles

39 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Direct n-body problem

Parallel decomposition

There are two major decomposition techniques:
• Domain/data decomposition

• Forms the foundation for most parallel algorithms
• Here we assign different subset of data to different processors

and do the same or similar computation over them.
• Functional/task decomposition

• An alternative strategy where we assign different functions to
different processors.

• When algorithms have no obvious data structure that can be
decomposed.

• It could be the case of a single task at the root of a tree
creates new tasks for each subtree, based on the mode of
computation rather than the structure of the data.

40 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Direct n-body problem

Parallel decomposition

• We can visualize bodies in direct n-body problem as elements
of an array.

• This data can be divided into subsets: it is a case of
domain/data parallelism.

41 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Direct n-body problem

Data decomposition as an array

!
(0)!

!
(1)!

!
(2)!

!
(3)!

!
(4)!

!
(5)!

!
(6)!

!
(7)!

!
(8)!

!
(9)!

!
(10)!

!
(11)!

!
(12)!

!
(13)!

!
(14)!

!
(15)!

!
(16)!

!
(17)!

!
(18)!

!
(19)!

!
(20)!

!
(21)!

!
(22)!

!
(23)!

!
(24)!

!
(25)!

!
(26)!

!
(27)!

!
(28)!

!
(29)!

!
(30)!

!
(31)!

!
(32)!

!
(33)!

!
(34)!

!
(35)!

!
(36)!

!
(37)!

!
(38)!

!
(39)!

!
(40)!

!
(41)!

!
(42)!

!
(43)!

!
(44)!

!
(45)!

!
(46)!

!
(47)!

!
(48)!

!
(49)!

!
(50)!

!
(51)!

!
(52)!

!
(53)!

!
(54)!

!
(55)!

!
(56)!

!
(57)!

!
(58)!

!
(59)!

!
(60)!

!
(61)!

!
(62)!

!
(63)!

!

!
(0)!

!
(1)!

!
(2)!

!
(3)!

!
(4)!

!
(5)!

!
(6)!

!
(7)!

!
(8)!

!
(9)!

!
(10)!

!
(11)!

!
(12)!

!
(13)!

!
(14)!

!
(15)!

!
(16)!

!
(17)!

!
(18)!

!
(19)!

!
(20)!

!
(21)!

!
(22)!

!
(23)!

!
(24)!

!
(25)!

!
(26)!

!
(27)!

!
(28)!

!
(29)!

!
(30)!

!
(31)!

!
(32)!

!
(33)!

!
(34)!

!
(35)!

!
(36)!

!
(37)!

!
(38)!

!
(39)!

!
(40)!

!
(41)!

!
(42)!

!
(43)!

!
(44)!

!
(45)!

!
(46)!

!
(47)!

!
(48)!

!
(49)!

!
(50)!

!
(51)!

!
(52)!

!
(53)!

!
(54)!

!
(55)!

!
(56)!

!
(57)!

!
(58)!

!
(59)!

!
(60)!

!
(61)!

!
(62)!

!
(63)!

!

42 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Direct n-body problem

Data decomposition as a matrix

!
(0,!0)!

!
(0,!1)!

!
(0,!2)!

!
(0,!3)!

!
(0,!4)!

!
(0,!5)!

!
(0,!6)!

!
(0,!7)!

!
(1,!0)!

!
(1,!1)!

!
(1,!2)!

!
(1,!3)!

!
(1,!4)!

!
(1,!5)!

!
(1,!6)!

!
(1,!7)!

!
(2,!0)!

!
(2,!1)!

!
(2,!2)!

!
(2,!3)!

!
(2,!4)!

!
(2,!5)!

!
(2,!6)!

!
(2,!7)!

!
(3,!0)!

!
(3,!1)!

!
(3,!2)!

!
(3,!3)!

!
(3,!4)!

!
(3,!5)!

!
(3,!6)!

!
(3,!7)!

!
(4,!0)!

!
(4,!1)!

!
(4,!2)!

!
(4,!3)!

!
(4,!4)!

!
(4,!5)!

!
(4,!6)!

!
(4,!7)!

!
(5,!0)!

!
(5,!1)!

!
(5,!2)!

!
(5,!3)!

!
(5,!4)!

!
(5,!5)!

!
(5,!6)!

!
(5,!7)!

!
(6,!0)!

!
(6,!1)!

!
(6,!2)!

!
(6,!3)!

!
(6,!4)!

!
(6,!5)!

!
(6,!6)!

!
(6,!7)!

!
(7,!0)!

!
(7,!1)!

!
(7,!2)!

!
(7,!3)!

!
(7,!4)!

!
(7,!5)!

!
(7,!6)!

!
(7,!7)!

!

!
(0,!0)!

!
(0,!1)!

!
(0,!2)!

!
(0,!3)!

!
(0,!4)!

!
(0,!5)!

!
(0,!6)!

!
(0,!7)!

!
(1,!0)!

!
(1,!1)!

!
(1,!2)!

!
(1,!3)!

!
(1,!4)!

!
(1,!5)!

!
(1,!6)!

!
(1,!7)!

!
(2,!0)!

!
(2,!1)!

!
(2,!2)!

!
(2,!3)!

!
(2,!4)!

!
(2,!5)!

!
(2,!6)!

!
(2,!7)!

!
(3,!0)!

!
(3,!1)!

!
(3,!2)!

!
(3,!3)!

!
(3,!4)!

!
(3,!5)!

!
(3,!6)!

!
(3,!7)!

!
(4,!0)!

!
(4,!1)!

!
(4,!2)!

!
(4,!3)!

!
(4,!4)!

!
(4,!5)!

!
(4,!6)!

!
(4,!7)!

!
(5,!0)!

!
(5,!1)!

!
(5,!2)!

!
(5,!3)!

!
(5,!4)!

!
(5,!5)!

!
(5,!6)!

!
(5,!7)!

!
(6,!0)!

!
(6,!1)!

!
(6,!2)!

!
(6,!3)!

!
(6,!4)!

!
(6,!5)!

!
(6,!6)!

!
(6,!7)!

!
(7,!0)!

!
(7,!1)!

!
(7,!2)!

!
(7,!3)!

!
(7,!4)!

!
(7,!5)!

!
(7,!6)!

!
(7,!7)!

!

43 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Direct n-body problem

Parallel decomposition

• The algorithm is reduced to parallel matrix-vector operations.
• However, all nodes need to have access to all the data in this
model, which could put constraints on memory.

• There are other n-body algorithms to mitigate this issue, where
bodies are geographically grouped together and considered as
a large single body (Example: Barnes–Hut method).

44 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

N-body problem

Barnes–Hut method

Technically, it reduces the complexity of problem from O(n2)to
O(n× logn)

45 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel decomposition
Heat diffusion problem

Figure : Heat diffusion on a 2D plate

Crux: To update each cell, we need information about all its
neighbouring cells. 46 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel decomposition
Heat diffusion problem

The economy of decomposition

Partitioning as near-square rectangular blocks will give an
advantage of 4× (

√
p - 1)N/

√
p times over partitioning as rows

(where p is total perimeter and N is number of partitions) in terms
of the amount of data to be synchronized.

47 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel decomposition
Heat diffusion problem

Ghost cells

!
"#$!#%!

!
"#$!&%!

!
"#$!'%!

!
"#$!(%!

!
"#$!#%!

!
"#$!&%!

!
"#$!'%!

!
"#$!(%!

!
"&$!#%!

!
!

! !
"&$!(%!

!
"&$!#%!

!
!

! !
"&$!(%!

!
"'$!#%!

!
!

! !
"'$!(%!

!
"'$!#%!

!
!

! !
"'$!(%!

!
"($!#%!

!
"($!&%!

!
"($!'%!

!
"($!(%!

!
"($!#%!

!
"($!&%!

!
"($!'%!

!
"($!(%!

!
"#$!#%!

!
"#$!&%!

!
"#$!'%!

!
"#$!(%!

!
"#$!#%!

!
"#$!&%!

!
"#$!'%!

!
"#$!(%!

!
"&$!#%!

!
!

! !
"&$!(%!

!
"&$!#%!

!
!

! !
"&$!(%!

!
"'$!#%!

!
!

! !
"'$!(%!

!
"'$!#%!

!
!

! !
"'$!(%!

!
"($!#%!

!
"($!&%!

!
"($!'%!

!
"($!(%!

!
"($!#%!

!
"($!&%!

!
"($!'%!

!
"($!(%!

!

!
"#$!#%!

!
"#$!&%!

!
"#$!'%!

!
"#$!(%!

!
"#$!)%!

!
!

! !

!
"&$!#%!

!
"&$!&%!

!
"&$!'%!

!
"&$!(%!

!
"&$!)%!

!
!

! !

!
"'$!#%!

!
"'$!&%!

!
"'$!'%!

!
"'$!(%!

!
"'$!)%!

!
!

! !

!
"($!#%!

!
"($!&%!

!
"($!'%!

!
"($!(%!

!
"($!)%!

!
!

! !

!
")$!#%!

!
")$!&%!

!
")$!'%!

!
")$!(%!

!
")$!)%!

!
!

! !

! ! !
!

!
!

! ! !
!

!

! ! !
!

!
!

! ! !
!

!

! ! !
!

!
!

! ! !
!

!

!

Data visualization after sharing ghost cells among the processors.

48 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel decomposition
Bioinformatics

Biological data can be big

A few examples:
• Gene expression data: DNA microarrays now provide tens of
thousands of values per sample.

• Protein X-ray Crystallography.
• DNA Sequencing.

49 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel decomposition
Bioinformatics

DNA sequencing technology is outpacing Moore’s Law

50 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel decomposition
Bioinformatics example

Multiple Sequence Alignment

Aligning all the related sequences is also computationally intensive
even though the amount of data is generally not so large by this
step.

51 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel decomposition
Bioinformatics problem

Pylogenetic Reconstruction

Derive a tree of descent from multiple aligned sequences.

Input Output

52 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel problems - Bioinformatics

Evaluating the likelihood of a particular tree

Given a tree T, alignment A and substitution model S, the core of a
likelihood calculation is:

for each parent node p in T (in a postorder traversal) do
for each alignment column, a do
Lpa ← [1, 1, 1, 1]

end for
for each child node, c, of p do

for each alignment column, a do
Lpa ← Lpa × (Spc × Lca)

end for
end for

end for

53 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel decomposition
Bioinformatics problem

Parallelise tree evaluation by:

• Tree Branch - to some degree.
• Sequence Position - more generally.

Parallelise tree optimisation by:

• Parameter Space - e.g., the rate of mutation may take on
different values.

• Tree Space - the number of possible tree topologies increases
quadratically.

54 / 64

Parallel decomposition
Bioinformatics problem

Parallelise tree evaluation by:

• Tree Branch - to some degree.
• Sequence Position - more generally.

Parallelise tree optimisation by:

• Parameter Space - e.g., the rate of mutation may take on
different values.

• Tree Space - the number of possible tree topologies increases
quadratically.20

14
-0
2-
19

Introduction to Parallel Computing
Parallel programming

Parallel decomposition
Parallel decomposition

This slide is intentionally left blank.

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel programming

Memory Architecture

Architectural differences between memory architectures have
implications for how we program.
• Shared-memory systems use a single address space, allowing
processors to communicate through variables stored in a
shared address space.

• In distributed-memory systems each processor has its own
memory module and over a high speed network
communications take place.

55 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel programming

Shared memory

• Symmetric multiprocessing (SMP) : two or more identical
processors share the same memory.

• This shared memory may be simultaneously accessed by
multiple threads of same program.

• The most popular shared memory parallel programming
paradigm is OpenMP.

56 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel programming
Shared memory

Shared memory: address system

57 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel programming

Distributed memory

• Multiple-processor computer system in which each process has
its own private memory.

• Computational tasks can only operate on local data.
• If remote data is required, the computational task must
communicate with one or more remote processors.

• The most popular distributed memory programming paradigm
is MPI.

58 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel programming

Distributed memory: address system

59 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel programming

OpenMP vs MPI

• OpenMP
• Easy to parallelise existing codes without much coding effort.
• Look for iterative operations.
• Use OpenMP directives (pragma) to parallelise it. These create

threads that will run in parallel on different cores of the same
node.

• MPI
• If you want to scale your application beyond the maximum

number of cores available on a node.
• MPI is only a standard for message passing libraries based on

the consensus of the MPI Forum.
• There are different implementations of it.
• Popular implementations include: OpenMPI, MPICH, Intel

MPI.

60 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel programming

Hybrid programming model

• Mix and match OpenMP and MPI:
• OpenMP manages the workload on each (SMP) node.
• MPI facilitates communication among multiple nodes over the

network.
• The best of both worlds:

• OpenMP ensures efficient utilization of shared memory within
a (SMP) node.

• MPI facilitates efficient inter-node operations and sending of
complex data structures.

61 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Parallel programming

Thank You
Questions?

62 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Acknowledgments

• Slides developed by:
• Jaison Paul Mulerikkal, PhD
• Peter Maxwell

63 / 64

Story of computing Hegelian dialectics Parallel computing Parallel programming Memory classification

Acknowledgments

Reference

• Blaise Barney, Introduction to Parallel Computing, LLNL.
• Dr John Rugis, NeSI.

64 / 64

https://computing.llnl.gov/tutorials/parallel_comp/

	Story of computing
	The beginning
	Need for speed

	Hegelian dialectics
	Thesis
	Anti thesis

	Parallel computing
	Key concepts

	Parallel programming
	Parallel decomposition

	Memory classification
	Shared memory
	Distributed memory

