High performance computations
with multithreading

Gene Soudlenkov
(g.soudlenkov@auckland.ac.nz)

[#NeS

Outline

@ Introduction

® Threads and processes
© Using multiple threads
O Locks

® GOTCHAs

® Environment

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Introduction

Introduction

e Parallel computing
e Motivation

e Definitions

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Introduction

Parallel computing

Figure : Multitasking

e Concurrency and multitasking
e Multiprocessing and multithreading
e History of parallel computing

Did you know?

True parallelism goes back to Luigi and Menabrea, " Sketch of the
Analytic Engine Invented by Charles Babbage", 1842

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Introduction

Motivation

o Leverage hardware and software advances
e Increase performance
e Improve response time

e Increase scalability

Did you know?

The ILLIAC IV was one of the first attempts to build a massively
parallel computer. The ILLIAC IV design featured fairly high
parallelism with up to 256 processors, used to allow the machine to
work on large data sets in what would later be known as vector
processing.

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Threads and processes

Concurrency and parallelism

Parallelism is a condition that arises when at least two threads are
executing simultaneously.

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Threads and processes

Concurrency and parallelism

problem Innrucllunl

-l | 1-E=

“ -l | |-

NTTRERE

|||||||||| I -E -l 1 -
(a) Concurrency (b) Parallelism

Concurrency and parallelism - the difference

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Threads and processes

Threads and processes

e Multithreading is a more "light weight” form of concurrency:
there is less context per thread than per process. As a result
thread lifetime, context switching and synchronisation costs
are lower. The shared address space (noted above) means
data sharing requires no extra work.

e Multiprocessing has the opposite benefits. Since processes are
insulated from each other by the OS, an error in one process
cannot bring down another process. Contrast this with
multi-threading, in which an error in one thread can bring
down all the threads in the process. Further, individual
processes may run as different users and have different
permissions.

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Threads and processes

Process

A PROCESS is created by the operating system as a set of
physical and logical resources to run a program. Each process has:

e heap, static, and code memory segments.

e environment information, including a working directory and
file descriptors.

e process, group, and user IDs.

e interprocess communication tools and shared libraries.

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Threads and processes

Process

Figure : Structure of a process

Multithreaded Process

Process State: PC,
registers, SP, etc...

R4

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) i i ithreading

Threads and processes

Thread

A THREAD is the execution state of a program instance,
sometimes called an independent flow of control. Each thread runs
within the context of a parent process and is characterised by:

e registers to manage code execution.

e a stack.

scheduling properties (such as priority).

e its own set of signals.

some thread-specific data.

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Threads and processes

Multitasking

Multi-Processing vs. Multi-Threaded _ Thread is |Ight Weight

-3l taking lesser resources than a process.
Application
\

- Thread switching has smaller
overhead when switching contexts.

Figure : Multithreading and
multiprocessing

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Threads and processes

Multitasking cont'd

Multi-Processing vs. Multi-Threaded

PEIR - All threads can share same
L] set of open files, child processes.

Figure : Multithreading and

. . - Multiple threaded
multiprocessing

processes use fewer resources.

- One thread can read, write or change another thread’s data.

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Threads and processes

Local variables

Whenever

a program calls a subroutine

by a CPU instruction CALL, it saves

the current instruction pointer (IP)

onto the stack. It marks its position

before it branches, so it knows

where to return after termination of

Figure : Stack the subroutine. This saved address on
the stack is called a return address.

A high-level programming language
like C or C++ also puts local variables of the subroutine on top of
the stack. Thus, the subroutine gets its own memory area on the
stack where it can store its own data. This principle is also the key
of recursive routine calls because every new call to the subroutine
gets its own return address and its own local variables on the stack.

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Threads and processes

Local variables

Upon termination of the subroutine,
high-level languages first clean up the
stack by removing all local variables.
After that, the stack pointer

(SP) again points to the saved return
address. At a RET or RETURN
instruction, the processor reads

the return address from stack, jumps
back to the former IP position, and
continues the original program flow.

Figure : Memory layout of a
process

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Threads and processes

Local variables

When creating a

member variable (A field) or a static
member (static field), the address of
memory of the variable in the virtual
address space (which is translated

to a global memory address space)

is shared between all threads that are
created within the scope or the class.

((((((((

Figure : Memory layout of a
process

TLS (Thread Local Storage)is
a region in the heap that can only be
accessed by a specific thread.

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

Sample problem - matrix multiplication

Multiply two matrices matA and matB, storing the result in
matC'.

Dimensions of the sources matrices are passed in

dimx A, dimyA,dimzB and dimyB variables.

Dimensions of the destination matrix is assumed to be
dimyA x dimx B

Figure : Matrix multiplication algorithm

B _
[Jo]
bZ,Z b2,3
alvllal’2 —— o I
a<l azl ‘
A az.llaz,z : o

Using multiple threads

Matrix multiplication

Matrix multiplication algorithm

@ Check the sizes of two matrices A (m x n) and B (¢ x u): if
n =t then we can multiply them otherwise no (in that order
AB)

@ If they can be multiplied, then create a new matrix of size m
by u

© For each row in A and each column in B multiply and sum
the elements and the place the results in the rows and
columns of the result matrix AB

Matrix multiplication has complexity of O(n?). It means that every
time the dimension increases 10-fold, the time required will
increase 1000-fold.

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

Reference serial code

int multiply(int dimxA,int dimyA,int *matA,int dimxB,
int dimyB,int #*matB,int *matC)

{
int i,j,k,val;
//run matrix multiplication loop
for (i=0;i<dimyA;i++)
{
//clean destination line
for(j=0;j<dimxB; j++)
{
val=0;
for (k=0;k<dimxA;k++)
val+=matA[i*dimxA+k]*matB [k*dimxB+j];
matC[i*dimxB+j]=val;
}
¥
return 1;
}
Note

The sample code is straigtforward and simple. It does not in any way pretend to be

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

Reference serial code performance

Benchmarking is based on multiplying 100,300,500,1000,3000 and
5000-large square matrices.
Serial code execution gives the following results

Dim | Time, ms

100 1
300 36
500 195
1000 8617

3000 267337
5000 | 1409010

Table : Serial code performance.

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

Native threads-based implementation

e Use native threads to improve performance
e Assume 12 cores machine

e Changes require in the code

o Keep the algorithm intact

Figure : Parallel matrix multiplication

climvat Al 1) L)

[T

nnnnnnnnnnnnn

Note

Higher-grade optimisation of matrix multiplication requires
algorithm re-design. It is advisable to take into account the nature
of the matrices.

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

Grid decomposition

[CON BCBE RGN RUSN RUBNE RUSH OGN RO
wo | e foa oy as | as | oe | an
co|len|eolen|en|es|eol|en
o |len ey len|en|es| ool s
@ | e | e | @y | ey | s | @ | wn
(5.0 5.1) (5.2) 5.3) 5.4 (5.5) 6) 5.7
6o | 6|6 e]|en]| e | 6e|6n ©0) (61 (62 (63 (64 (65 (66 (67
(7,0) 7.1 (7.2) (7.3) (7.4 (7.5 | (7.6) (7.7) @y @y (72 @3) 749 @5 (76 (77

(a) Original grid (b) Grid decomposition

The example above demonstrates grid decomposition for 4 threads.

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) i i ithreading

Using multiple threads

Native threads-based implementation

Require additional routine

Parallelise outermost loop only

Assign a subset of lines per thread

Need thread configuration structure
e Simple implementation - no messaging support required
Threads will receive configuration data upon creation - no need to

deliver configuration data through external means (queues,
messages, etc).

struct MatMult

{
int dimxA,dimyA,dimxB,dimyB; //dimensions
int *matA,*matB,*matC; //src and dst matrices
int line_start,line_end; //start and end lines
//for the thread
g

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

Native threads-based implementation

#define THREADS_NUM 12

int multiply(int dimxA,int dimyA,int *math,
int dimxB,int dimyB,int *matB,
int *matC)

//store thread handles

pthread_t threads [THREADS_NUM];

//configuration structures per thread

struct MatMult config[THREADS_NUMI];

int count_per_thread; //number of lines per thread
int i;

//calculate number of lines per thread
count_per_thread=dimyA/THREADS_NUM;

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

Native threads-based implementation

for (i=0; i<THREADS_NUM;i++)

{
configl[il].dimxA=dimxA;
config[i].dimxB=dimxB;
configl[i] .dimyA=dimyA;
config[i].dimyB=dimyB;
config[i] .matA=matA;
config[i] .matB=matB;
config[i] .matC=matC;
configl[i].line_start=i*count_per_thread;
config[i].line_end=config[i].line_start+

count_per_thread;
}

config [THREADS_NUM-1].line_end+=
dimyA), THREADS _NUM;
for (i=0; i<THREADS_NUM;i++)
pthread_create (&threads[i] ,NULL,
multiply_aux ,&configl[il);

for (i=0; i<THREADS_NUM;i++)
pthread_join(threads[i],NULL);
return 1;

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

Native threads-based implementation

The actual working routine should:
Note: threads are created asynchronously, which means that

pthread_create call will not block and wait until the thread
function is done.

e Accept thread configuration for matrices
e Work within the line limits

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz)

High performance computations with multithreading

Using multiple threads

Native threads-based implementation

void *multiply_aux(void *ptr)

{
struct MatMult *pv=(struct MatMult *)ptr;
int i,j,k,val;

//run matrix multiplication loop
for(i=pv->line_start;i<pv->line_end;i++)
{
for(j=0;j<pv->dimxB; j++)
{
val=0;
for (k=0;k<pv->dimxA;k++)
val+=pv->matA[i*pv->dimxA+k]*
pv->matB [k*pv->dimxB+j];
pv->matC[i*pv->dimxB+jl=val;
}

}
return NULL;

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

Native threads-based implementation performance

Benchmarking is based on multiplying 100,300,500,1000,3000 and
5000-large square matrices.
Native threads-based code gives the following results

Dim | Time - serial | Time - native threads
100 1 1
300 36 8
500 195 45
1000 8617 696
3000 267337 23179
5000 1409010 126169

Table : Native threads-based performance.

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

e Industry standard

e Supported by major compiler developers

e Supported for multiple languages

e Multiplatform

e Based on directives or pragmas

e Spawns team of threads to handle parallel requests
e Supports shared and thread-local variables

e Supports conditional parallelisation

e No need to change the code significantly

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

OpenMP directives

e Composed of a sentinel followed by the command and the
clause:

e C/C++ sentinel: #pragma omp

e Fortran sentinel: !I$OMP
e Commands include:
parallel: forms a team of threads and starts parallel execution
for: parallelise loop automatically
sections: Defines non-iterative worksharing construct
single: specifies a single-thread block in a team
critical: restrict execution of a block to a single thread
barrier: specifies an explicit barrier at the point
atomic: ensures atomicall access to a specific storage
threadprivate: specifies thread local storage for the specified
variables

/tpragma omp parallel for private(i,j) schedule(dynamic

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

PARALLEL directive

e Forms a team of threads
e Team size is controlled by either

@ Environment variable OMP_NUM_THREADS
@ Explicitly set by function call omp_set_num_threads()
© By default - using the number of CPUs in the system

e Can be conditioned with IF clause

Example

#pragma omp parallel
printf ("Hello, world, from,thread,%d\n",omp_get_thread_num());

Output

Hello, world from thread
Hello, world from thread
Hello, world from thread
Hello, world from thread

w = N O

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

PARALLEL directive, continued

e Can be combined with for command to provide automatic
loop parallelization

e The iterations of the loop will be distributed dynamically in
evenly sized pieces

e Threads will not synchronize upon completing their individual
pieces of work if NOWAIT is specified

Example

int N=10,result=0,1i;
#pragma omp parallel for if (N>5) reduction(+:result)
for(i=0;i<N;i++) result+=ix*5;

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

PARALLEL directive, Data Scope Clauses

e IF (scalar logical expression) - conditional parallel execution:
check if there is enough work to do?

e DEFAULT (PRIVATE—SHARED—NONE) - establishes
default value for sharing attribute

e REDUCATION(operator : variable) - variable is initialised
with to relevant value and at the end of the loop the value of
the variable processes through the reduction operator for each
thread

e SHARED(list) - declares list to be shared by tasks

e PRIVATE(list) - declares list to be private to a task

e FIRSTPRIVATE(list) - same as private, initialises each
member of the list with the value given

e LASTPRIVATE(list) - same as private, leaves the value of
each member as it was before vacating the block

. COPYIN(I|st) - copies the value of the master thread

Gene Soudlenkov (g-soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

Scoping example

//BAD! //G00D!
#pragma omp parallel\ #pragma omp parallel \
for for private (y)

for (i=0;i<N;i++) for (i=0;i<N;i++)

{ {
int x=func(); int x=func();
y=func2(); //Unsafe y=func2(); //Safe
alil=x+y; alil=x+y;

} }

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

Data scoping - lets re-iterate

e Every variable has scope: shared or private
e Scoping can be controlled with scoping clauses:

shared

private

firstprivate

lastprivate

reduction clause explicitly identifies a reduction variable as
private

e Scoping is one of the leading error sources in OpenMP

e Unontended sharing of variables
e Privatization of the variables that must be shared

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

PARALLEL directive, Execution Control Clauses

e SCHEDULE (type, chunk) - Describes how iterations of the
loop are divided among the threads in the team. The following
policies supported:

@ STATIC
® DYNAMIC
© GUIDED

O RUNTIME
@ AUTO

e ORDERED - ensures predictable order of threads scheduling
e NOWAIT - If specified, then threads do not synchronize at
the end of the parallel loop.

e COLLAPSE(scalar) - Specifies how many loops in a nested
loop should be collapsed into one large iteration space and
divided according to the schedule clause.

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

SCHEDULE STATIC

STATIC schedule means that iterations blocks are mapped
statically to the execution threads in a round-robin fashion.

The nice thing with static scheduling is that OpenMP run-time
guarantees that if you have two separate loops with the same
number of iterations and execute them with the same number of
threads using static scheduling, then each thread will receive
exactly the same iteration range(s) in both parallel regions.

This is quite important on NUMA systems: if you touch some
memory in the first loop, it will reside on the NUMA node where
the executing thread was. Then in the second loop the same
thread could access the same memory location faster since it will
reside on the same NUMA node.

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

SCHEDULE DYNAMIC

DYNAMIC scheduling works on a " first come, first served” basis.
Two runs with the same number of threads might (and most likely
would) produce completely different "iteration space” - "threads”
mappings as one can easily verify

Since precompiled code could be run on various platforms it would
be nice if the end user can control the scheduling. That's why
OpenMP provides the special RUNTIME scheduler clause. With
runtime scheduling the type is taken from the content of the
environment variable OMP_SCHEDULE. This allows to test
different scheduling types without recompiling the application and
also allows the end user to fine-tune for his or her platform.

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

SCHEDULE GUIDED

There is another reason to choose between static and dynamic
scheduling - workload balancing. If each iteration takes vastly

different from the mean time to be completed then high work

imbalance might occur in the static case.

Take as an example the case where time to complete an iteration
grows linearly with the iteration number. If iteration space is
divided statically between two threads the second one will have
three times more work than the first one and hence for 2/3 of the
compute time the first thread will be idle. Dynamic schedule
introduces some additional overhead but in that particular case will
lead to much better workload distribution.

A special kind of dynamic scheduling is the GUIDED where
smaller and smaller iteration blocks are given to each task as the
work progresses.

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

REDUCTION clause

e REDUCTION clause applies operation to the variable stated
after all threads are done

e Variables listed are automatically declared private

e Reduces synchronisation overhead

int factorial (int number)
{
int factor=1, i;
#pragma omp parallel for reduction (*:factor)
for (i=2;i<number ;i++)
factor*x=i;
return factor;

High performance computations with multithreading

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz)

Using multiple threads

REDUCTION clause

e At the beginning of the paralle block a private copy is made of
the variable and pre-initilized to a certain value

e At the end of the parallel block the private copy is atomically
merged into the shared variable using the defined operator
The private copy is actually just a

e new local variable by the same name

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

SINGLE execution

Allows code to be executed serially in par-

allel region e.
e Any thread will run the code, the rest of the team will sl%n it
and wait until SINGLE block is done %
e NOWAIT attribute can be used to avoid waiting@t the end
of the block
Example

#pragma omp parallel
{

printf ("In,parallel, all, threads
#pragmagomp_single
uuuuprintf ("Printed from only one thread\n");
uuuuprintf ("In parallel again, all threads\n");

}

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

MASTER execution

. Allows code to be executed serially in par-
allel region by the master thread only

e Only master thread run the code, the rest of the team will
skip it without waiting W

Unless you use the threadprivate clause, the only important differencel
nowait and master is that if you have multiple master blocks in a pa
are guaranteed that they are executed by the same thread every ti e, the
values of private (thread-local) variables are the same.

Example

#pragma omp parallel
{

printf ("In,parallel, all threads
#pragma omp master
uuuuprintf ("Printed from only one thread\n");
uuuuprintf ("In parallel again, all threads\n");

}

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

FLUSH directive

Even when variables used by threads are supposed to be shared,
the compiler may take liberties and optimize them as register
variables. This can skew concurrent observations of the variable.
The flush directive can be used to ensure that the value observed
in one thread is also the value observed by other threads.

In the example, it is enforced that at the time either of a or b is
accessed, the other is also up-to-date.

You need the flush directive when you have writes to and
reads from the same data in different threads.

Example from the OpenMP specification

/* First thread */ /* Second thread */
b = 1; a = 1;
#pragma omp flush(a,b) #pragma omp flush(a,b)
if (a == 0) if (b == 0)
{ {

/* Critical section */ /* Critical section */
}

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

Sections

e SECTIONS directive is a non-iterative work-sharing construct
e Each SECTION is executed once by a thread in the team

e |t is possible for a thread to execute more than one section if
it is quick enough and the implementation permits this

Figure : Sections execution

p— 1] =
\ Emem
\
2 bl | mmia |
o
thraads
=y
paralel region parallel regaon parallel regian

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

Sections: Example

Example

#pragma omp parallel
{
printf ("Parallel 1., ,Going from thread,%d\n",
omp_get_thread_num());
#pragma omp sections

printf ("Entered into,the sections, thread,%d\n",
omp_get_thread_num());
#pragma omp section
printf ("Section,1.,Going, from,thread %d\n",
omp_get_thread_num());
#pragma omp section
printf ("Section,2.,Going, from,thread,%d\n",
omp_get_thread_num());
}
printf ("Parallel 2. ,Going from thread.%d\n",
omp_get_thread_num()) ;

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

Sections: Example output

As the output suggests the only thread executing the sections was
thread 3 - the rest of the threads skipped sections part.

Output

Parallel 1. Going from thread 3
Entered into the sections, thread 3
Section 1. Going from thread 3
Section 2. Going from thread 3

Parallel 1. Going from thread 2
Parallel 1. Going from thread O
Parallel 1. Going from thread 1
Parallel 2. Going from thread 3
Parallel 2. Going from thread O
Parallel 2. Going from thread 1
Parallel 2. Going from thread 2

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

Synchronization in OpenMP

e MASTER forces the block to be executed only by the master
thread

e CRITICAL(name) is used to serialize work in parallel block

e if CRITICAL is named, all critical block with the same name
are serialized

e ATOMIC is used to ensure that only a single thread will
execute the statement followed. The directive is not
structured

e BARRIER is used to force all threads in the team wait upon
reaching the barrier point. Barriers are costly. They should not

be used inside other synchronization blocks, such as
CRITICAL, SINGLE, SECTIONS or MASTER

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

Sample problem - matrix multiplication with OpenMP

Multiply two matrices matA and matB, storing the result in
matC'.

Dimensions of the sources matrices are passed in

dimx A, dimyA,dimzB and dimyB variables.

Dimensions of the destination matrix is assumed to be
dimyA x dimx B

Figure : Matrix multiplication algorithm

B _
[
b2,2 b2,3
alvllal,Z e —— o I
aLl 822 ‘
A a3,1|a3.2 : O

Using multiple threads

Reference OpenMP code

int multiply(int dimxA,int dimyA,int *matA,int dimxB,
int dimyB,int *matB,int *matC)
{

int i,j,k,val;

//run matrix multiplication loop
#pragma omp parallel for shared(matC) private(j,k,val)
for (i=0;i<dimyA;i++)

{
//clean destination line
for(j=0;j<dimxB; j++)
{
val=0;
for (k=0;k<dimxA;k++)
val+=matA[i*dimxA+k]*matB [k*dimxB+j];
matC[i*dimxB+j]=val;
}
}

return 1;

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

OpenMP-based implementation performance

Benchmarking is based on multiplying 100,300,500,1000,3000 and
5000-large square matrices.
OpenMP-based code gives the following results

Dim | Time - serial | Time - native threads | Time - OpenMP
100 1 1 1
300 36 8 8
500 195 45 43
1000 8617 696 656
3000 267337 23179 23101
5000 1409010 126169 125913

Table : OpenMP-based performance.

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

Combined performance graph

Figure : Timing of matrix multiplication code
Timing
Matrix multiplication

1600000
1400000
1200000

1000000

e Serial
2 800000 e NtV E
OpenMP

600000

400000

200000

Using multiple threads

Advanced loop parallelisation - nested loops

e Problem - nested loops, can they be parallelised?
e This code DOES not work!

#pragma omp parallel for
for (int i=0;i<10;i++)
#pragma omp parallel for
for (int j=0;j<10;j++)

e OpenMP 3.0 loop nesting works
#pragma omp parallel for collapse (2)
for(int i=0;i<10;i++)
for (int j=0; j<10; j++)

e Another alternative: enable nesting by calling
omp_set_nested(1);

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Introduction Threads and processes Using multiple threads Locks GOTCHAs Environment

Conclusions

-+ Threads may increase performance proportional to the
threads team size

-+ Native threads implementation requires significant rework of
the code

-+ OpenMP threads usage can be implemented with minimal
code changes

+ OpenMP threads usage is cross-platform and is easy to
maintain across various operating systems and compilers

- Threads can lead to a variety of conditional problems

- Multithreaded applications are harder to debug

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Using multiple threads

£ { LY

i A

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Locking issues - race conditions

e Multithreaded code suffers from the bugs related to multiple
readers/writers of the same object

e If not protected, an object access may suffer from race
condition where multiple threads may try and
change/retrieve status of the same object at the same time

e Serialization of access is required in order to protect against

race condition
Locking mechanisms differ from one OS

to another (00 g,
S.

|

refer&modify

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Locking issues - race conditions

Race conditions are difficult to detect and debug

Mathematical proof of software correction is not necessarily
enough to ensure the lack of race conditions

Example: Therac-25 disaster, 6 died
North American blackout of 2003

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Locking issues - deadlocks

A deadlock occurs when at least two tasks wait for each
other and each cannot resume until the other task proceeds

e Often happens when code block requires locking of multiple
mutexes at once

e Usually the order of mutexes to be locked must be preserved
among threads in order to avoid deadlocks
No matter how much time is allowed to

pass, this situation will never resolve itself @ <=
&

Toa,
& T

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Locking issues - OpenMP locking API

e OpenMP provides rich, cross-platform API for locking support

e OpenMP locks are wrappers around the platform-specific
implementations of mutex operations

e OpenMP runtime library provides a lock type, omp_lock_t in
its include file omp.h

OpenMP API

® omp_init_lock initializes the lock
® omp_destroy_lock destroys the lock

® omp_set_lock attempts to set the lock. If the lock is already set by another
thread, it will wait until the lock is no longer set, and then sets it

® omp_unset_lock unsets the lock

® omp_test_lock attempts to set the lock. If the lock is already set by another
thread, it returns 0; if it managed to set the lock, it returns 1.

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Locks

Locking issues - OpenMP locking API example

e omp_destroy_lock can be called only for unlocked objects
e Kernel transition inside the lock call adds up to the overhead

omp_lock_t writelock;

omp_init_lock (&writelock);
#pragma omp parallel for
for(i = 0; i < x; i++)
{
omp_set_lock(&writelock);
// one thread at a time
a=bx*c;
omp_unset_lock (&writelock);
+
omp_destroy_lock (&writelock);

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Locks

Scoped locks vs. CRITICAL vs. ATOMIC

e It is allowed to leave the locked region with jumps (e.g. break,
continue, return), this is forbidden in regions protected by the
critical-directive

e Scoped locking is exception safe, critical is not

e All criticals wait for each other, with guard objects you can
have as many different locks as you like - named critical
sections help a bit, but name must be given at compile-time
instead of at run-time like for scoped locking

e The most important difference between critical and atomic is
that atomic can protect only a single assignment and you can
use it with specific operators

e Addition with critical section is 200 times more expensive
than simple addition, atomic addition is 25 times more
expensive then simple addition

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

GOTCHAs

Gotchas!

e Synchronization is expensive - moderate it

e Declaring a pointer shared makes the pointer shared - not
memory it points to

e Declaring a pointer private makes the pointer private - not
memory it points to

e Reduction clause needs a barrier - do not use "nowait” there

e If race condition is suspected, run the loops in reverse and see
if the results are the same

e No assumptions are to be made with regard to order of
execution for loops

o Prefer static schedule over dynamic and guided - they have
higher overhead

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Environment

Environment variables

OpenMP uses a set of environment variables that can be modified
to ensure the best performance for the application.

e OMP_NUM_THREADS: number, set the desired number of
threads in a team

e OMP_DYNAMIC: true or false, forces dynamic schedule
type to be used

e OMP_STACKSIZE: number optionally followed by unit
specification B, K, M or G, specifies the size of the stack for
threads created by OpenMP. If unit is not specified, kilobytes
(K) is assumed

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Environment

Loadleveler and OpenMP

e Loadleveler provides special considerations for OpenMP
applications

e #parallel_threads=N reserves the required number of cores

e OMP_NUM_THREADS variable is automatically set by
Loadleveler according to parallel_threads value

Loadleveler job description example

#Q@account_no=uoa

#Q@class=default

#Q@group=nesi

#Q@resources=ConsumableMemory (100mb) ConsumableVirtualMemory (100mb)
#0@wall _clock_1limit=10:00

#Qjob_type=serial

#Qparallel_threads=4

#Q@output = $(job_name).$(jobid).out

#Q@error = $(job_name).$(jobid).err

#Qqueue

./run_my_omp_app

Gene Soudlenkov (g.soudlenkov@auckland.ac.nz) High performance computations with multithreading

Questions & Answers

	Introduction
	Threads and processes
	Using multiple threads
	Locks
	GOTCHAs
	Environment

