MP]

Charles Bacon



Framework of an MPI

Program
* Initialize the MPI environment
— MPI Init(...)
* Run computation / message passing

 Finalize the MPI environment
— MPI_Finalize()



Hello World fragment

#include <mpi.h>
rc = MPI _Init(&argc, &argv);

rc = MPI_Comm_rank(MPI_ COMM_WORLD,
&rank);

rc = MPI_Comm_size(MPI_ COMM_WORLD,
&size);

printf(“Hello from %d of %d”, rank, size);
rc = MPI_Finalize();



Things to note about hello
world

* When you run many tasks of this
program, they are all running the
same code

— Can differentiate behavior by, for
iInstance, conditionals on my rank: if
(rank ==0) {...}

* This example does not include
message passing

* |t's perfectly fair to have many ranks
running on the same compute node



Point to point
communication

* Send / receive

 Basic information:
— Who should | send to / receive from?

—What am | getting? (ints, floats, structs,
o ?)

— How many of those am | getting?

— What buffer should | save them into?

— Did it succeed?

— What was the purpose of the message?



Send / recv example

MPI_Send(data, 10, MPI_INT, target, O,
MPI_COMM_WORLD);

Send 10 integers starting from my “data” pointer
Send them to rank “target” in MPI_COMM_WORLD

With message tag “0”



Send / recv example

MPI Recv(&buff, 1, MPI_ DOUBLE, sendr, O,
MPI_COMM_WORLD, &stat);

Receive from rank “sendr” in MPI_COMM_WORLD
Can optionally receive from any source
Receive a single double into my “buff” variable
Message should have the “0” tag
Can optionally receive from any tag
Store status into the “stat” variable.
Contains source/tag info, plus error code



You can now do cool things!

* Point-to-point send and receive are
very powerful tools. You can now
write most parallel programs you
would want to.

* Everything else I'm going to talk
about now are to give you
finer-grained control over behavior,
avolid deadlocks, and get better
performance.



Heat diffusion

* To approximate the solution of the Poisson
Problem V2u = f on the unit square, with u
defined on the boundaries of the domain
(Dirichlet boundary conditions), this simple
2nd order difference scheme is often used:
— (U(x+h,y) - 2U(x,y) + U(x-h,y)) / h2+ (U(x,y+h) -

2U(x,y) + U(x,y-h)) / h2= f(x,y)

— Where the solution U is approximated on a
discrete grid of points x=0, h, 2h, 3h, ..., 1, y=0,
h, 2h, 3h, ... 1.

—To simplify the notation, U(ih,jh) is denoted Uj;



The five-point stencil



Five point stencil, 9 nodes




Ghost cells




Local data structure

 Each node has a local patch of the global
array. A “halo” is allocated around the
local patch to store the information
required from our neighbors

* Each node computes a timestep, then
both:
— Shares its data with its neighbors
— Receives updated data from its neighbors

* This goes by the name Bulk Synchronous
Processing



Heat diffusion outline

for(i=0; curr time < end time; i++){
if (i % update steps == 0)
{print_status();}
local _diffusion(my_data, dx, dt, a);

ghost update(my data, myrank,
size);

curr_time += dt;

}



Othing things you can do

* Calculate Pl in a parallel manner

— Take care for distributed random number
generation

* Find prime numbers, find pyramidal
numbers
— Take care for load balancing

* Distribute tasks from rank 0 to
worker ranks

— Take care that rank O does not become
the bottleneck



Collectives

* Collectives implement

communicator-wide communication
in a way that allows the

implementation to optimize behavior
* Some examples:

— MPI_Barrier to synchronize
— MPI_Reduce to get
sum/min/max/product of data

— MPI Scatter to spread data from one
node to many others



Communicators

* Enough dancing around - what are
the communicators about?

* Imagine running a coupled
simulation in a single code. You
might want to run collectives on a
subset of the nodes

* Imagine using a matrix-multiply
library. How does it know what
subset of nodes are participating?



MP]_COMM_WORLD

C
[0 €] C ©
e C
(1)
o oe group1 group2 oooo
o © o



MPI Bcast and MPI_Scatter

* |[t's common In a serial code to read
in some startup data, then run

* Please don’t make every rank of your
parallel program open and read from
a file!

* Instead, let rank O read in the file,
then either broadcast or scatter the
data, as appropriate

— Your interconnect is way faster than a
disk



Parallel I/O and visualization

/0 gets complicated at scale. Fortunately
there are libraries to help

Look into HDF5, NetCDF, pNetCDF, ADIOS
as possible APIs that will save you the
headache of architecting scalable parallel
/0O

Also pay attention to visualization via
Paraview or Vislt

MPI-2 does include some parallel file
primitives if you want to roll your own



Oh dear: Deadlock

* Before introducing deadlock, I'd like to
introduce deadlock.

« Rank O:

MPI Recv(&buff, 1, MPI_INT, 1, 0, MPI_ COMM_WORLD,
&stat);

MPI_Send(data, 1, MPI_INT, 1, 0, MPI_ COMM_WORLD);

* Rank 1:

MPI Recv(&buff, 1, MPI_INT, 0, 0, MPI_ COMM_WORLD,
&stat);

MPI_Send(data, 1, MPI_INT, O, 0, MPI_COMM_WORLD);



Causes of deadlock

* Messages interleaving differently
than you expected, causing a
message not to be received how you
expected

* Not making progress in a
send/receive because of blocking
semantics



Message ordering

guarantees

* |f @ sender sends two messages to the
same destination and both match the
same receive, the receive operation
will receive the first before the second

* |If a receiver posts two receives that
match the same message, the earlier
receive will match first

* No fairness applies to messages from
different senders



Unexpected ordering
deadlock

* This can happen, for instance, with
MPI_ANY_SOURCE receives.

MPI_Recv(..., MPI_ANY_SOURCE, ...)
MPI Recv(..., rank 2, ...)

* If rank O sends first, then rank 2 sends, no
guarantee that you won’t match the “any
source” with the rank 2 message, then be
stuck forever waiting to hear from rank 2

* This situation can also be resolved with
tags



Blocking and Memory

semantics

* After MPI_Send completes, what is
true?

—You are free to change the contents of
your send buffer

— The remote side may not have received
the data

« After MPI_Recv completes, what is
true?

— The data has landed in your application
buffer

e Nnte that MPI hac 1¥fc nwn hiiffarc 1+



You have a lot of control

* You have control over:

— When your code should be allowed to
proceed

— What the MPI implementation is allowed

to assume the receiver of your code has
done

— What buffers are used by the operations

* You have the obligation not to violate
the contract associated with the
options you choose



First: non-blocking receive

What if we could have both sides say “l am
willing to receive a message, but let me keep
going” and then they both performed their
sends -> no deadlock

MPI Irecv(...) gives you an MPI Request
handle to track the progress of the receive

MPI Test() will peek at the status
MPI_Wait() will block for completion

You must do one or both of these things to
ensure that MPlI can make progress!



MPI lrecv()

* MPI Irecv (&buf, count, datatype,
source, tag, comm, &request);

— The same as MPI _Recv, but with an
MPIl_Request at the end instead of an
MPI_Status

* MPI Test: 1 if done, O if not
 MPI_Wait: Fills in an MPI_Status after

waiting for the MPI _Request to finish

— Often used: MPI_Waitall() on an array of
statuses



Optimization related to irecv

* One nice thing about irecv() Is it
gives MPI the opportunity to allocate
buffer space for the receive before
the send posts

* This enables some implementations
to do remote direct memory access
(RDMA) to place the message into
memory from the network device
without interrupting the program



MPI Isend()

* Same kind of thing as MPI _Irecv(),
but with a little more onerous
contract

* You promise not to modify the buffer
being used for the send until the
send has completed, because you
don’t know when MPI will copy it out

* Again, must either test or wait to
ensure progress on the send



Other send/recv variants

MPI_Sendrecv: combines send and
receive into a single call for a pair
who are exchanging data

MPI Bsend: Tell MPI to use a buffer
that you supply, so you have control
over memory

MPI Ssend: Don’t return until the
receive has begun processing

MPI _Rsend: | promise that the recv
posted



MPI Libraries

* One of the real strengths of MPI was
that it was well-designed to let third
parties write libraries that you can
re-use
—This Is a strong motivator for

communicators, even if you yourself
only use COMM WORLD

* Now that we have discussed how you
can write your own MPI code, let’s
talk about how you can avoid writing
1t



Some MPI-friendly software

PETSc, SUNDIALS: numerical frameworks
Dense linear algebra: BLAS, ScaLAPACK
Sparse linear algebra: SuperlLU

Meshing: MOAB, ParMETIS
Load-balancing: Included in PETSc, ADLB

Molecular Dynamics: AMBER, CHARMM,
NAMD

Spectral methods: FFTW
Computational chemsitry: NWChem, GPAW



Other MPI programming
models

* At smaller scales, you see a lot of
mixing between threaded on-node
with OpenMP or CUDA combined with

MPI between nodes.

 Another featured introduced later In
MPI Is one-sided communications; too
advanced to cover here

— Sometimes this will be provided to you
by a library interface like Global Arrays

(GA)



Debugging and Optimizing

There are MPI debugging tools
available, like DDT, Totalview, and
gdb

For profiling, things like MPI_Wtime()
to get timers, gprof, TAU, and

HPCToolkit() can collect performance
data

Also, don’t forget to optimize your
serial program first

Pay attention to load balancing



Scalability is not the same as
performance

Performing work in parallel involves
book-keeping costs that serial codes
don’t have

Highly performant codes often fail to
achieve perfect scaling

Highly inefficient codes are easier to
scale!

Make sure you measure what
matters: time to solution



Things we didn’t cover

MPI| Datatypes:

— Allows optimizations related to packing/unpacking data for
sends and receives

MPI Topologies:

— Let MPI assign a logical cartesian structure to your ranks,
instead of you coding it

MPI Communicator routines:
— Creating new ones, splitting on conditions

MPI RMA/one-sided
MPI-10

MPI-3 features

— Non-blocking collectives, neighborhood collectives, new RMA
features



