
MPI

Charles Bacon

Framework of an MPI
Program

• Initialize the MPI environment
–MPI_Init(…)

• Run computation / message passing
• Finalize the MPI environment
–MPI_Finalize()

Hello World fragment

#include <mpi.h>
 rc = MPI_Init(&argc, &argv);
 rc = MPI_Comm_rank(MPI_COMM_WORLD,
&rank);
 rc = MPI_Comm_size(MPI_COMM_WORLD,
&size);
 printf(“Hello from %d of %d”, rank, size);
 rc = MPI_Finalize();

Things to note about hello
world

• When you run many tasks of this
program, they are all running the
same code
– Can differentiate behavior by, for

instance, conditionals on my rank: if
(rank == 0) {…}

• This example does not include
message passing

• It’s perfectly fair to have many ranks
running on the same compute node

Point to point
communication

• Send / receive
• Basic information:
–Who should I send to / receive from?
–What am I getting? (ints, floats, structs,

… ?)
– How many of those am I getting?
–What buffer should I save them into?
– Did it succeed?
–What was the purpose of the message?

Send / recv example

MPI_Send(data, 10, MPI_INT, target, 0,
MPI_COMM_WORLD);

Send 10 integers starting from my “data” pointer

Send them to rank “target” in MPI_COMM_WORLD

With message tag “0”

Send / recv example

MPI_Recv(&buff, 1, MPI_DOUBLE, sendr, 0,
MPI_COMM_WORLD, &stat);

Receive from rank “sendr” in MPI_COMM_WORLD

Can optionally receive from any source

Receive a single double into my “buff” variable

Message should have the “0” tag

Can optionally receive from any tag

Store status into the “stat” variable.

Contains source/tag info, plus error code

You can now do cool things!

• Point-to-point send and receive are
very powerful tools. You can now
write most parallel programs you
would want to.

• Everything else I’m going to talk
about now are to give you
finer-grained control over behavior,
avoid deadlocks, and get better
performance.

Heat diffusion

• To approximate the solution of the Poisson
Problem ∇2u = f on the unit square, with u
defined on the boundaries of the domain
(Dirichlet boundary conditions), this simple
2nd order difference scheme is often used:
– (U(x+h,y) - 2U(x,y) + U(x-h,y)) / h2 + (U(x,y+h) -

2U(x,y) + U(x,y-h)) / h2 = f(x,y)
–Where the solution U is approximated on a

discrete grid of points x=0, h, 2h, 3h, ... , 1, y=0,
h, 2h, 3h, ... 1.

– To simplify the notation, U(ih,jh) is denoted Uij

The five-point stencil

Five point stencil, 9 nodes

Ghost cells

Local data structure

• Each node has a local patch of the global
array. A “halo” is allocated around the
local patch to store the information
required from our neighbors

• Each node computes a timestep, then
both:
– Shares its data with its neighbors
– Receives updated data from its neighbors

• This goes by the name Bulk Synchronous
Processing

Heat diffusion outline

 for(i=0; curr_time < end_time; i++){
 if (i % update_steps == 0)
{print_status();}
 local_diffusion(my_data, dx, dt, a);
 ghost_update(my_data, myrank,
size);
 curr_time += dt;
}

Othing things you can do

• Calculate PI in a parallel manner
– Take care for distributed random number

generation

• Find prime numbers, find pyramidal
numbers
– Take care for load balancing

• Distribute tasks from rank 0 to
worker ranks
– Take care that rank 0 does not become

the bottleneck

Collectives

• Collectives implement
communicator-wide communication
in a way that allows the
implementation to optimize behavior

• Some examples:
–MPI_Barrier to synchronize
–MPI_Reduce to get

sum/min/max/product of data
–MPI_Scatter to spread data from one

node to many others

Communicators

• Enough dancing around – what are
the communicators about?

• Imagine running a coupled
simulation in a single code. You
might want to run collectives on a
subset of the nodes

• Imagine using a matrix-multiply
library. How does it know what
subset of nodes are participating?

MPI_Bcast and MPI_Scatter

• It’s common in a serial code to read
in some startup data, then run

• Please don’t make every rank of your
parallel program open and read from
a file!

• Instead, let rank 0 read in the file,
then either broadcast or scatter the
data, as appropriate
– Your interconnect is way faster than a

disk

Parallel I/O and visualization

• I/O gets complicated at scale. Fortunately
there are libraries to help

• Look into HDF5, NetCDF, pNetCDF, ADIOS
as possible APIs that will save you the
headache of architecting scalable parallel
I/O

• Also pay attention to visualization via
Paraview or VisIt

• MPI-2 does include some parallel file
primitives if you want to roll your own

Oh dear: Deadlock

• Before introducing deadlock, I’d like to
introduce deadlock.

• Rank 0:
MPI_Recv(&buff, 1, MPI_INT, 1, 0, MPI_COMM_WORLD,
&stat);
MPI_Send(data, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

• Rank 1:
MPI_Recv(&buff, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
&stat);
MPI_Send(data, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

Causes of deadlock

• Messages interleaving differently
than you expected, causing a
message not to be received how you
expected

• Not making progress in a
send/receive because of blocking
semantics

Message ordering
guarantees

• If a sender sends two messages to the
same destination and both match the
same receive, the receive operation
will receive the first before the second

• If a receiver posts two receives that
match the same message, the earlier
receive will match first

• No fairness applies to messages from
different senders

Unexpected ordering
deadlock

• This can happen, for instance, with
MPI_ANY_SOURCE receives.
MPI_Recv(…, MPI_ANY_SOURCE, …)
MPI_Recv(…, rank 2, …)

• If rank 0 sends first, then rank 2 sends, no
guarantee that you won’t match the “any
source” with the rank 2 message, then be
stuck forever waiting to hear from rank 2

• This situation can also be resolved with
tags

Blocking and Memory
semantics

• After MPI_Send completes, what is
true?
– You are free to change the contents of

your send buffer
– The remote side may not have received

the data

• After MPI_Recv completes, what is
true?
– The data has landed in your application

buffer

• Note that MPI has its own buffers it
uses during both the send and
receive operations

You have a lot of control

• You have control over:
–When your code should be allowed to

proceed
–What the MPI implementation is allowed

to assume the receiver of your code has
done

–What buffers are used by the operations

• You have the obligation not to violate
the contract associated with the
options you choose

First: non-blocking receive

• What if we could have both sides say “I am
willing to receive a message, but let me keep
going” and then they both performed their
sends -> no deadlock

• MPI_Irecv(…) gives you an MPI_Request
handle to track the progress of the receive

• MPI_Test() will peek at the status
• MPI_Wait() will block for completion
• You must do one or both of these things to

ensure that MPI can make progress!

MPI_Irecv()

• MPI_Irecv (&buf, count, datatype,
source, tag, comm, &request);
– The same as MPI_Recv, but with an

MPI_Request at the end instead of an
MPI_Status

• MPI_Test: 1 if done, 0 if not
• MPI_Wait: Fills in an MPI_Status after

waiting for the MPI_Request to finish
– Often used: MPI_Waitall() on an array of

statuses

Optimization related to irecv

• One nice thing about irecv() is it
gives MPI the opportunity to allocate
buffer space for the receive before
the send posts

• This enables some implementations
to do remote direct memory access
(RDMA) to place the message into
memory from the network device
without interrupting the program

MPI_Isend()

• Same kind of thing as MPI_Irecv(),
but with a little more onerous
contract

• You promise not to modify the buffer
being used for the send until the
send has completed, because you
don’t know when MPI will copy it out

• Again, must either test or wait to
ensure progress on the send

Other send/recv variants

• MPI_Sendrecv: combines send and
receive into a single call for a pair
who are exchanging data

• MPI_Bsend: Tell MPI to use a buffer
that you supply, so you have control
over memory

• MPI_Ssend: Don’t return until the
receive has begun processing

• MPI_Rsend: I promise that the recv
posted

MPI Libraries

• One of the real strengths of MPI was
that it was well-designed to let third
parties write libraries that you can
re-use
– This is a strong motivator for

communicators, even if you yourself
only use COMM_WORLD

• Now that we have discussed how you
can write your own MPI code, let’s
talk about how you can avoid writing
it

Some MPI-friendly software

• PETSc, SUNDIALS: numerical frameworks
• Dense linear algebra: BLAS, ScaLAPACK
• Sparse linear algebra: SuperLU
• Meshing: MOAB, ParMETIS
• Load-balancing: Included in PETSc, ADLB
• Molecular Dynamics: AMBER, CHARMM,

NAMD
• Spectral methods: FFTW
• Computational chemsitry: NWChem, GPAW

Other MPI programming
models

• At smaller scales, you see a lot of
mixing between threaded on-node
with OpenMP or CUDA combined with
MPI between nodes.

• Another featured introduced later in
MPI is one-sided communications; too
advanced to cover here
– Sometimes this will be provided to you

by a library interface like Global Arrays
(GA)

Debugging and Optimizing

• There are MPI debugging tools
available, like DDT, Totalview, and
gdb

• For profiling, things like MPI_Wtime()
to get timers, gprof, TAU, and
HPCToolkit() can collect performance
data

• Also, don’t forget to optimize your
serial program first

• Pay attention to load balancing

Scalability is not the same as
performance

• Performing work in parallel involves
book-keeping costs that serial codes
don’t have

• Highly performant codes often fail to
achieve perfect scaling

• Highly inefficient codes are easier to
scale!

• Make sure you measure what
matters: time to solution

Things we didn’t cover

• MPI Datatypes:
– Allows optimizations related to packing/unpacking data for

sends and receives

• MPI Topologies:
– Let MPI assign a logical cartesian structure to your ranks,

instead of you coding it

• MPI Communicator routines:
– Creating new ones, splitting on conditions

• MPI RMA/one-sided
• MPI-IO
• MPI-3 features
– Non-blocking collectives, neighborhood collectives, new RMA

features

